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Abstract 
We describe and illustrate a spatio-temporal modelling approach for analyzing age- or size-
specific catch-per-unit-effort (CPUE) data to develop indices of relative abundance and 
associated composition data. The approach is based on three concepts: 1) composition data that 
are used to determine the component of the population represented by the index should be 
weighted by CPUE (abundance) while the composition data used to represent the fish removed 
from the stock should be weighted by catch; 2) due to spatial non-randomness in fishing effort 
and fish distribution, the index, index composition, and catch composition, should be calculated 
at a fine spatial scale (e.g., 1°x1°) and summed using area weighting; and 3) fine-scale spatial 
stratification will likely result in under-sampled and unsampled cells and some form of 
smoothing method needs to be applied to inform these cells. We illustrate the concepts by 
applying them to yellowfin tuna (Thunnus albacares) in the eastern Pacific Ocean.  

Key Words: catch-per-unit-effort, CPUE, spatio-temporal model, index of abundance, catch-at-
age, length composition 
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1. Introduction 
Fisheries stock assessment is the gold standard for providing management advice. Age- or size- 
structured population dynamics models are fit to multiple data sets to estimate model parameters 
and associated derived management quantities. The main data types, other than catch, are indices 
of relative abundance and composition data representing the proportions of the sampled 
population within different age, length, sex, and/or weight categories. The indices provide 
information on trends in abundance. The composition data provide information on the 
component of the population represented by the index, and the size or age of the fish removed by 
the fishery. They both provide information on absolute abundance (Maunder and Piner, 2015). 
Therefore, it is essential that the indices of relative abundance and composition data are analyzed 
appropriately to ensure they are as precise and accurate as possible.  

Preferably, indices of abundance are based on well-designed surveys, are proportional to 
abundance, and are precise. Unfortunately, surveys are not possible for many stocks due to 
logistical and funding limitations. Therefore, many stock assessments, such as those conducted 
for tunas worldwide, rely on indices of relative abundance based on fishery catch-per-unit-of-
effort (CPUE) data. These fishery-dependent indices are influenced by several factors that may 
invalidate the assumption that the index is proportional to abundance (Harley et al., 2001; 
Maunder et al., 2006a; Thorson et al., 2017c). Of particular concern is that fishing effort is not 
randomly or systematically distributed over the whole stock area, and is rather likely to be 
concentrated where fish are abundant. Therefore, expanding indices from sampled to under-
sampled or unsampled areas may lead to positive bias. Similar issues also apply to the 
composition data, but are typically not addressed.  

There is a large body of literature describing alternative CPUE “standardization” approaches 
to minimize the influence of factors other than abundance on the final index (Maunder and Punt, 
2004). Typically, the CPUE is standardized using a Generalized Linear Model (GLM), or a 
similar method, to account for factors that impact CPUE (e.g., vessel and gear characteristics, 
season, location, and environmental conditions). There are also numerous examples of more 
sophisticated approaches to deal with specific issues or fine-tune a component of the 
standardization method. For example, Hinton and Nakano (1996) used a mechanistic model to 
match the three-dimensional spatial distribution (latitude, longitude, and depth) of fishing effort, 
with environmental conditions and fish habitat preference to standardize CPUE for blue marlin. 
Many authors have focused on the fine scale spatial distribution of CPUE (e.g., Walters, 2003; 
Carruthers et al., 2011; Thorson et al., 2017c), while others have used broader scale spatial strata 
to standardize CPUE (e.g., Punt, et al., 2001; Gruss et al., 2019). 

Historical approaches to deal with spatial variation in CPUE commonly used a simple GLM 
that included location as a factor without an additional term for time-space interaction. This 
approach implicitly assumes that the estimated year effect (i.e., the temporal trend), which is 
assumed to be a proxy of relative abundance, is the same in each spatial stratum, and that only 
the average CPUE differs among strata. The assumptions underlying this model can lead to bias 
in the estimated index of relative abundance in several situations, including when the spatial 
distribution of the stock changes over time (e.g., Punt et al., 2000b). Such a situation can 
typically be identified when the interaction term between spatial stratum and year is statistically 
significant, or the time series of year effects from different strata show different trends.  

In general, statistically significant interaction terms between year and another categorical 
variable that result in meaningful differences in standardized trends are problematic. Calculating 
the index requires choosing a level for the variable interacting with year, and thus the estimated 
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trend will depend on the chosen level (Maunder and Punt, 2004). If the interaction is treated as a 
random effect, calculating the index requires specifying the average value for the variable that is 
treated as random. When the variable interacting with year is a spatial factor, a more appropriate 
approach may be to use “area-weighting”, where the index is calculated as the weighted sum of 
model predictions over the levels of the spatial factor. The weights are equal to the spatial area 
associated with each factor. However, this approach assumes that the sampling represents all 
locations in a spatial stratum, including poorly-sampled locations, which is unlikely to be even 
approximately true for large spatial strata. Spatio-temporal modeling methods, which can use 
information on CPUE from neighboring locations to improve estimation of the spatial effects 
throughout the area occupied by the stock, can be based on finer spatial strata and should lead to 
improved indices compared to those derived from simple area-weighting. In cases of large 
differences in the year effect among spatial strata, the stock may be modelled as multiple 
independent or interacting populations, and each population assessed based on its respective 
stratum’s index of relative abundance (Punt, 2019).  

CPUE-based indices of relative abundance used in stock assessment models are 
representative of the population component caught in the fishery, rather than the entire 
population. Typically, this issue is addressed by using an age- or size-based selectivity curve that 
is estimated by fitting to fishery composition data. In most cases, the selectivity curve is used to 
characterize both the catch and the index of abundance. Naively, this makes sense, since both 
catch and the index of abundance are derived from the same fishery (e.g. gear). However, 
selectivity in the stock assessment model does not simply represent contact selectivity (e.g., a 
fish being trapped in a gillnet as it tries to pass through), but also availability, which can be a 
consequence of the spatial structure of the fleet relative to the stock, and is likely to change over 
time (Sampson, 2014; Waterhouse et al., 2014). The index is used in the assessment model to 
represent changes in abundance while the catch represents mortality due to fishery removals.  
Catch is not necessarily distributed spatially in proportion to abundance, and the “selectivity” in 
the stock assessment will differ between the index and the catch when the composition data 
differ systematically among spatial strata, and catch distribution among strata changes through 
time. In general, the index selectivity should represent the total vulnerable (i.e. filtered through 
the gear selectivity) abundance across the domain of the index, while the catch selectivity will 
represent the vulnerable abundance available to the fishery adjusted as the fishery spatial 
distribution changes over time. This concept is advantageous because ‘index selectivity’ will be 
unaffected by fleet movements so may be relatively stationary over time (assuming no major 
changes in the gear that are not accounted for), while ‘removals selectivity’ does not need to be 
stationary because, in the ideal case when catches are well characterized, harvest by age-and-
year can just be removed exactly (i.e., it does not need to be assigned a likelihood component). 
In practice, approximations are typically used by modelling temporal and/or spatial variability in 
removals selectivity and fitting to the composition data. 

The composition data should be calculated differently for the index of abundance and the 
catch. These data should be calculated by spatial stratum and summed as in the construction of a 
CPUE- based index of relative abundance. However, the composition data for the index should 
be weighted by the product of the CPUE by stratum and the areas of the spatial strata, while the 
catch composition data should simply be weighted by the catch for the spatial strata. 

Here we discuss the use of spatial-temporal models to deal with changes in the spatial 
distribution of the fishery and the stock, and to standardize size composition data. We then 
discuss how this applies to yellowfin tuna (Thunnus albacares) in the eastern Pacific Ocean 
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(EPO) to further illustrate the approach. We apply a spatiotemporal delta model (Thorson and 
Barnett 2017) to standardize the catch-per-day-fished and length-composition data from the 
purse seine fishery on yellowfin tuna associated with dolphins, and evaluate its influence on the 
stock assessment compared to conventional CPUE indices.  

2. Eastern Pacific Ocean yellowfin tuna application 
We illustrate the impact of area weighting of CPUE and length-composition data using data for 
yellowfin tuna caught purse-seine sets associated with dolphins in in the eastern Pacific Ocean 
during 1975 - 2016. The CPUE-based indices of abundance and length-composition data are then 
used in a stock assessment model to determine their impact on the assessment results. The data 
are divided into three fisheries based on spatial strata (Fig. 1) to account for possible differences 
in selectivity and catchability. We only used CPUE and associated composition data for large 
(class-6) purse-seine vessels that made at least 75% of their sets on tunas associated with 
dolphins (Fig. 2). Length-composition data are grouped into 10cm bins from 20 to 200 cm.    

An integrated age-structured stock assessment model fit to CPUE-based indices of 
abundance and length-composition data developed in Stock Synthesis V3.23b (Methot and 
Wetzel, 2013) is used to assess yellowfin tuna in the EPO (Minte-Vera et al., 2019). The full 
specification of the assessment can be found in Aires-da-Silva and Maunder (2012) and Table 1. 
The model operates on a quarterly time step, so the index of abundance and length composition 
data are calculated by quarter. Natural mortality is age and sex-specific, with higher natural 
mortality for females than males starting from 30-month-old and higher for juveniles. Growth 
follows a Richards’ curve. Separate dome-shaped selectivity curves are estimated for the 
majority of fisheries. Selectivity for the southern longline fishery is assumed to be asymptotic. 
Maximum likelihood techniques are used to estimate the population scaling parameter (virgin 
recruitment, R0), lognormal recruitment deviates for each quarter (sd = 0.6), parameters to 
construct the initial numbers at age in 1975, and selectivity parameters. Recruitment is assumed 
to be independent of stock size. Fisheries are defined as combinations of gear used (longline or 
purse seine), set type (for purse seiners) and area of operation. The purse seine sets are of three 
types: sets associated with dolphins, sets associated with floating objects, and sets on free-
swimming schools. The indices of abundance are fit assuming a lognormal likelihood function 
and the length-composition data are fit assuming a multinomial likelihood function. The current 
analysis differs from Minte-Vera et al. (2019) by estimating a change in catchability and 
selectivity for the southern longline fisheries and their related indices of abundance since 2010, 
as well as by not using the indices of abundance from the purse seine fisheries for free-
swimming schools. These changes are considered improvements to the stock assessment and also 
allow the data from the purse seine fisheries on yellowfin associated with dolphins to have more 
impact on the assessment results.   

The specific analyses conducted are described in detail below under the corresponding 
sections.  

3. Dealing with spatial data 
3.1 Spatial weighting 
Addressing changes in the spatial distribution of the fishery and/or stock when developing 
indices of relative abundance should be an important component of CPUE standardization. Area-
weighting can be applied to avoid bias due to temporal variation in the spatial distribution of the 
statistical weights if the spatial distribution of the fishery has changed substantially (Punsley, 
1987; Campbell, 2004). Area-weighting for nominal CPUE is calculated as follows 
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𝐼𝐼𝑡𝑡 = ∑ 𝑐𝑐𝑠𝑠,𝑡𝑡 𝐴𝐴𝑠𝑠
𝑠𝑠       (1) 
𝑓𝑓𝑠𝑠,𝑡𝑡 ∑𝑘𝑘𝐴𝐴𝑘𝑘

where It is the index for time t, cs,t is the catch in spatial stratum (or station) s during time t, fs,t is 
the effort in spatial stratum s during time t, and As is the area of spatial stratum s. In many cases 
the area might be assumed equal and left out of equation 1. 

Area weighting contrasts with commonly used approaches to standardize CPUE data such as 
naive use of GLMs, which when applied to the entire fishery region, can be considered data-
weighted in the sense that each data point is implicitly given equal weight in the log-likelihood 
of the standardization model, independent of the spatial stratum to which it belongs. Data-
weighting for nominal CPUE is calculated as follows 

𝐼𝐼𝑡𝑡 = 1 ∑ 𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑡𝑡        (2) 

𝑛𝑛 𝑓𝑓𝑖𝑖

where n is the number of observations, ci is the catch for observation i, and fi is the effort for 
sample i. Area weighting and data weighting both differ from the simple ratio of total catch to 
total effort, which is weighted by effort. Effort-weighting is calculated as follows 

∑𝐼𝐼𝑡𝑡 = 𝑖𝑖∈𝑡𝑡 𝑐𝑐𝑖𝑖      (3) ∑𝑖𝑖∈𝑡𝑡 𝑓𝑓𝑖𝑖

Spatial strata that have more data will be given more weight in the analysis as a result of 
using data-weighting. By contrast, area-weighting will adjust the total statistical weights within 
each time-area stratum to be proportional to the area, by adjusting the relative weights of 
individual data points. This can cause large strata with small sample sizes to overwhelm small 
strata with better coverage, and to have similar influence as large strata with large sample sizes. 
Abundance estimates from large strata with small sample sizes may have high variance and thus 
increase the uncertainty of estimates of total abundance. Nevertheless, this increased uncertainty 
might be representative of true knowledge about population density when data are not available 
for large segments of the population’s range (e.g., Walters, 2003).  

When substantial changes in the spatial distribution of the stock have occurred, the 
abundance trends in each stratum should ideally be calculated and combined in some manner to 
obtain a representative time series of overall abundance estimates. In this instance, the handling 
of strata with missing data becomes a key issue (Walters 2003; Punt et al., 2000a; Carruthers et 
al 2011; McKechnie et al., 2013). We address this issue here using a spatio-temporal model to 
impute density even for strata with missing data, and to propagate the increase in variance with 
the resulting predictions into the overall index of abundance.  

3.1.1 YFT application 
Spatial weighting is investigated using four approaches for the purse seine fishery on EPO 
yellowfin associated with dolphins: 

1) Nominal index (effort weighted): The index is calculated as the total catch divided by the 
total effort in each year-quarter. 

2) GLM-1 (data weighted): The index is calculated using a delta-lognormal GLM with year-
quarter as a categorical variable.  

3) GLM-2 3 spatial strata: The same as ‘GLM-1’, but with spatial stratum as a categorical 
variable. The strata are the three dolphin-associated fisheries included in the current 
assessment model (Fig. 1). These areas have been used in the assessment since its 
inception and are based on spatial differences in length-composition data. More spatial 
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strata might be used in a more rigorous GLM analysis, but we use the three previously-
defined spatial strata for consistency with previous analyses.  

4) GLM-3 3 spatial strata year-quarter and stratum interaction: The same as ‘GLM-2 3 
spatial strata’, but with a year-quarter and stratum interaction term (implemented as 
separate GLMs for each stratum). The index is calculated by summing the year-quarter 
terms for each separate GLM weighted by the area of each stratum for each year-quarter.    

The GLM index of abundance (#2) was found to be similar to the nominal index (#1; Fig. 
3a). The index for the southern stratum is different from those of the north and coastal strata, 
showing more extreme fluctuations (Fig. 3b). This makes the area-weighted index (#4) the most 
different from the nominal index out of the three GLM approaches both in terms of scale and 
variability (Fig. 3a). However, the differences in the indices for the whole EPO are near-trivial 
due to the low CPUE (abundance) of yellowfin in the southern stratum.  

3.2 Spatio-temporal modeling 
A method is needed to improve the estimates for spatial strata with low sample sizes and to 
impute abundance for spatial strata within the stock distribution for which no data exist for one 
or more time periods. This is particularly the case if the spatial stratification is based on a fine 
scale. Contemporary spatio-temporal models are useful for this purpose and have been made 
practical by recent developments in statistical methodology, computational algorithms, and 
software packages (e.g., Kristensen et al., 2016). These models are based on the assumption that 
catch rates in nearby locations should be similar, but that the degree of similarity should decrease 
as the distance between locations increases. This relationship is called the ‘covariance function’ 
and the rate at which correlation decreases with distance is referred to as the ‘decorrelation rate’. 
Spatio-temporal models can also be configured to share information among periods close in time 
(e.g., using temporal autocorrelation, Thorson et al., 2016). Spatio-temporal models estimate the 
degree of information-sharing between neighboring points by estimating the shape of the 
covariance function from a specified family, which then allows the model to incorporate either 
strong or weak smoothing for predictions that are close in space and time. This can improve 
estimates for locations and times with low sample size, including for unsampled strata. Research 
is ongoing regarding additional computational improvements, e.g., for nonstationary correlation 
functions, which would allow decorrelation rates to differ among stock habitats.   

In common with any other analysis method, several terms can be included in the model and 
some form of model selection used to determine the “best” model. Of particular interest are 
models with just spatial effects and those with spatial-temporal effects. Including only spatial 
effects is appropriate when the spatial distribution of the stock does not change over time. For 
example, when physical habitat (e.g., rocks, kelp, sea grass) determines the spatial distribution of 
the stock. Spatial-temporal effects are appropriate when the factors determining the distribution 
of the stock change over time; for example, when unmeasured oceanographic variables (e.g., 
temperature, chlorophyll), which change over time, determine the spatial distribution of the 
stock. In either case, model selection tools should be used to evaluate the alternative models.  

Generalized linear mixed models with spatio-temporal effects are now seeing broad usage in 
analysis of spatial data (e.g., Lewy and Kristensen, 2009; Kristensen et al., 2014; Nielsen et al., 
2014; Thorson et al., 2015a). Kai et al. (2017a) presented a spatio-temporal model for shark 
CPUE and much of the following comes from their description (other examples are provided in 
Table 2). Space and time are modeled as main effects with an additional term for the interaction 
between space and time. The random effects are integrated out during statistical inference. The 
spatial components are implemented using a Gaussian random field (GRF), which is a 
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computationally efficient approach for implementing multi-dimensional smoothers (Thorson et 
al., 2015a). The spatial-temporal interaction term can be modeled in a computationally efficient 
manner by using a GRF for each time period so that the spatial-temporal component distribution 
is uncorrelated over time or using a first-order autoregressive process to include temporal 
correlation. Seasonal spatial effects are also often modelled (e.g. Kai et al., 2017a). Seasonal 
models could be developed by including a spatial term for each season and a spatio-temporal 
term for each season-year combination. We recommend further research regarding seasonal 
models but do not discuss these in detail here. 

The spatio-temporal model estimates the density of individuals, d (s, t), for each stratum 
(station) s (latitude and longitude) and time t as: 

𝑛𝑛log�𝑑𝑑(𝑠𝑠, 𝑡𝑡)� = 𝑑𝑑0(𝑡𝑡) + 𝛾𝛾(𝑠𝑠) + 𝜃𝜃(𝑠𝑠, 𝑡𝑡) + ∑ 𝑗𝑗
𝑗𝑗=1 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗(𝑠𝑠, 𝑡𝑡),  (4) 

where 𝑑𝑑0(𝑡𝑡) represents a temporal main effect, 𝛾𝛾(𝑠𝑠) represents the spatial component, 𝜃𝜃(𝑠𝑠, 𝑡𝑡) 
represents the spatio-temporal interaction term, and 𝛽𝛽𝑗𝑗 represents the impact of covariate 𝑗𝑗 with 
value 𝑥𝑥𝑗𝑗(𝑠𝑠, 𝑡𝑡) on density at stratum 𝑠𝑠 and time t.  

Spatial variation 𝛾𝛾(𝑠𝑠) is modeled using a GRF, which reduces to a multivariate normal 
distribution when evaluated at a finite set of strata (Thorson et al., 2015b). The Matérn 
correlation function is used for computational efficiency (Diggle and Ribeiro, 2007; Roa-Ureta 
and Niklitschek, 2007; Lindgren et al., 2011). Computational efficiency is often improved by 
adapting a “predictive process” framework where spatial/spatio-temporal variation is only 
modeled between a small number of locations (termed “knots”, which together form a “mesh”) 
and variables are then interpolated between these knots.  However, ongoing research is needed to 
evaluate this “predictive process” framework including: (1) whether the number of knots impacts 
results; and (2) how best to determine the mesh configuration.  For example, the R package 
VAST by default distributes knots proportionally to the density of available data (Thorson, 
2019a), which results in poorly sampled areas receiving fewer knots, which then impacts the 
resolution of the spatial imputation.  

Expected catch, 𝑐𝑐∗𝑖𝑖 , which is used to fit to the observed catch during the parameter estimation 
process using a likelihood function (e.g., log-normal, negative-binomial, or a zero-inflated 
model), is the product of relative fish density, as represented by the spatio-temporal model, and 
fishing effort 𝑓𝑓𝑖𝑖, 𝑐𝑐∗𝑖𝑖 = 𝑑𝑑(𝑠𝑠𝑖𝑖, 𝑡𝑡𝑖𝑖)𝑓𝑓𝑖𝑖, for the i-th observation, at stratum si and time ti. Covariates 𝑥𝑥𝑘𝑘,𝑖𝑖 
for each data point i and covariate k can be added to model catchability (e.g., gear effects) 
log(𝑐𝑐∗) = log�𝑑𝑑(𝑠𝑠 , 𝑡𝑡 )� + log(𝑓𝑓 ) + ∑𝑛𝑛𝑘𝑘

𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑘𝑘=1 �́�𝛽𝑘𝑘𝑥𝑥𝑘𝑘,𝑖𝑖.  
The parameters are estimated by maximizing the likelihood function while integrating across 

the random effects representing spatial and spatio-temporal variation using Template Model 
Builder (TMB). TMB is an R package (R Development Core Team, 2013) that efficiently fits 
latent variable models to data (https://www.github.com/kaskr/adcomp; Kristensen et al., 2016), 
through the use of the Laplace approximation for integration, and automatic differentiation for 
calculating derivatives. The estimated fixed effects parameters include those representing the 
temporal main effects (e.g., coefficients associated with a categorical variable for year), the 
covariance structure associated with the spatial component, the spatial-temporal interaction (the 
variance of the first-order autoregressive model and the covariance structure of the GRF), the 
coefficients associated with density covariates, and the catchability covariate coefficients. For a 
discussion of catchability and density covariates, see Thorson (2019a).   

The index of relative abundance for a particular time period is calculated by summing the 
predicted densities (or the product of predicted density and area, if area differs among strata) for 
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each location in that time period (Thorson, 2019a). Care needs to be taken to identify which 
factors affect catchability (𝑥𝑥) and should not be used to estimate density, but are used to calculate 
the expected catch used in the likelihood function. Covariates that effect density (𝑥𝑥) are used to 
calculate the quantities that are summed to generate the index of relative abundance. When 
random effects are used to model abundance on the log-scale, TMB will report the median 
instead of the mean of the resulting distribution on the natural scale. Therefore, a bias-correction 
algorithm to account for retransformation bias when predicting and visualizing total abundance 
and size composition (Thorson and Kristensen, 2016) should be used where appropriate 
(Thorson, 2019b).  

3.2.1 YFT application 
A VAST implementation of a spatio-temporal delta model is used to standardize the CPUE data 
from the dolphin-associated yellowfin fishery (Xu et al., 2019a). The resulting index of relative 
abundance is compared with those obtained from the raw data and the GLM standardizations. 

The spatio-temporal model is a delta-lognormal Generalized Linear Mixed Model (GLMM) 
with a time-invariant spatial variation component and a time-varying spatio-temporal component 
The temporal main effect is modelled as a separate intercept for both components of the delta-
model for each season-year combination (season-year is a categorical variable). The spatio-
temporal component is independent across years (i.e., the optional autoregressive process with a 
one time-step lag (AR1) is not included) due to computational limitations. No other covariates 
are included in the model. The whole EPO is modelled simultaneously, and indices of abundance 
are extracted for each spatial stratum (Fig. 1). The data used in the model are aggregated at the 
year-quarter level and by 1° by 1° stratum, with two hundred knots distributed over the domain 
proportionally to effort in days fished. Two sets of indices are developed from the same model:     

1) an index for each of the three fisheries used in the assessment (Fig. 1); and 
2) an overall index for the whole EPO. 

The spatio-temporal model produces an index for the whole EPO similar to that produced 
using the raw data (Fig. 3c). The index from the spatio-temporal model shows larger fluctuations 
and is higher than the GLM index for later years. The three fishery-specific indices of abundance 
from the spatio-temporal model are similar to each other (Fig. 3d). The spatio-temporal model-
based index for the southern stratum fluctuates less than the GLM-based index (compare Fig. 3).  

There are substantial differences in the spatial distribution of effort (Fig. 2b) and the 
predicted CPUE (Fig. 2a), thus the implied yellowfin densities, among years.  The 4th quarter of 
1998 was an El Nino and had higher CPUE in the coastal areas (Fig. 2ai) compared to the 4th 
quarter of 2003 (Fig. 2aiii), which was neutral. The 4th quarter of 1998 was a La Nina and had 
more restricted effort distribution but predicted CPUE was high towards the west and to the 
south (Fig. 2aii) where there was no effort (Fig2bii). 

3.3 Composition data 
Analysis of composition data (e.g., age, length, or weight composition) is a key component of 
developing CPUE-based indices of abundance in stock assessments. The composition data 
provide information on the portion of the population represented by the index with respect to age 
or size.  

3.3.1 Simple assembly 
Composition data are typically used in their raw form by summing all the samples in size or age 
bins, each sample possibly weighted by the corresponding catch. Simply summing the 
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composition data implicitly assumes that each sample represents a random draw from the 
population (e.g., fish sizes are randomly distributed throughout the whole area). In practice, this 
is unlikely to be the case because many species exhibit spatial heterogeneity in age or size. 
Reweighting samples by the associated catch or expanding sampled data to the total catch by 
stratum (e.g., gear, month, 1° by 1° square) made sense in the context of earlier assessment 
methods such as virtual population analysis, where the composition data are directly used to 
inform the age or size distribution of the total catch removed by the fishery. However, catch-at-
age methods, which predict catch composition based on selectivity and population structure, 
require different methods for preparation of composition data, depending on whether it is meant 
to represent the catch, or to represent the index of abundance.        

3.3.2 Spatio-temporal modelling of composition data 
The traditional process of reweighting composition data can be interpreted as one step towards a 
model-based framework for “standardizing” composition data (Thorson, 2014; Thorson and 
Haltuch, 2018). Standardizing composition data using model-based methods has several potential 
benefits including: 

1) accounting for confounding factors (e.g., vessel type, gear configuration or season) when 
using composition samples to estimate proportions for each category (e.g., size, area, or 
age); 

2) using auxiliary information to improve predictions of age/size/sex composition in spatial 
strata with low samples sizes, e.g., by basing predictions upon estimated environmental 
relationships, persistent spatial or temporal patterns, or alternative sources of information 
such as tags or fishery CPUE; and 

3) calculating the multinomial sample size for estimated composition data based on the 
variance in composition sampling data, where this sample size is then used as a starting 
point (or ceiling) for the weight that these data should receive in an assessment model 
(Thorson and Haltuch, 2018) - although there are approaches to calculate the sample size 
for raw data (e.g., bootstrapping), they are seldom used.  

The spatio-temporal modelling approach described in previous sections can be modified to 
include composition information (Kristensen et al., 2014; Nielsen et al., 2014; Thorson et al., 
2019c). For example, an independent model could be applied to each age- or size- group 
separately to create indices of relative abundance for each group for use in the stock assessment 
model. Using independent indices of abundance for each age class was common practice when 
tuning virtual population analysis, and is commonly used in state-space age-structured models 
(e.g., the base-model in Nielsen and Berg, 2014). However, estimating a separate index of 
abundance for each age/size category ignores the correlation among age-classes specified within 
the stock assessment model. In addition, it does not take full advantage of the data because it 
ignores the fact that similar ages or sizes likely have similar catch rates. In many cases, there 
may not be sufficient data by size or age bin, especially if modelling length or weight, such that 
if age/size groups are assumed independent, age or size bins may have to be combined, which 
could dampen signals about important population or fishery processes (e.g., recruitment or 
selectivity).  

The three dimensions of the spatio-temporal model (time, latitude, and longitude) need to be 
modified to include a fourth dimension of either age or size to incorporate composition 
information in a spatio-temporal model (Lewy and Kristensen, 2009; Kristensen et al., 2009; 
Nielsen et al., 2014; Kai et al., 2017b; Thorson et al., 2017a). One complication with our 
recommended approach is that its implementation is computationally intensive. Also, because 
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composition data are usually not collected for all catch events, the catch and composition data 
may need to be fit using separate likelihood functions in the size-composition standardization, 
but simultaneously in the same spatio-temporal standardization model. 

Of note, a growth and survival model could also be used to inform the standardization of size 
composition data (e.g., Kristensen et al., 2014). However, this approach is not considered here as 
the aim of the composition data standardization is to create data for use in an age-structured 
stock assessment, where the resulting estimates of proportion-at-size are subsequently fitted 
based on an assumed or estimated growth function. Accounting for growth in the standardization 
would result in the growth information being used twice, and compromise variance estimates in 
the assessment model. 

One concrete example of our proposed approach was implemented by Kai et al. (2017b) who 
developed a spatio-temporal model that also included the size of the fish caught (see Table 3 for 
other examples). The following comes from their description.  

The spatio-temporal model incorporating size data estimates the density:  

 𝑛𝑛log�𝑑𝑑(𝑠𝑠, 𝑡𝑡, 𝑙𝑙)� = 𝑑𝑑0(𝑡𝑡) + 𝛾𝛾(𝑠𝑠) + 𝜏𝜏(𝑙𝑙) + 𝜃𝜃(𝑠𝑠, 𝑡𝑡, 𝑙𝑙) + ∑ 𝑗𝑗
𝑗𝑗=1 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗(𝑠𝑠, 𝑡𝑡, 𝑙𝑙)  (5) 

where 𝜏𝜏(𝑙𝑙) represents the impact of size (length) on expected catch rates, 𝜃𝜃(𝑠𝑠, 𝑡𝑡, 𝑙𝑙) represents an 
interaction term of stratum, time and size, and each covariate j can be a function of size, 
expressed as 𝑥𝑥𝑗𝑗(𝑠𝑠, 𝑡𝑡, 𝑙𝑙) . The marginal (common to all strata and times) size effect, 𝜏𝜏(𝑙𝑙) , is 
modeled using a first-order autoregressive process (AR1) leading to a semi-parametric 
representation of the expected density at each size bin (Thorson et al., 2014). Covariates could 
also be included to model catchability as described above.  Expected catch 𝑐𝑐∗𝑖𝑖  is the product of 
density and fishing effort 𝑓𝑓𝑖𝑖, 𝑐𝑐∗𝑖𝑖 = 𝑑𝑑(𝑠𝑠𝑖𝑖, 𝑡𝑡𝑖𝑖 , 𝑙𝑙𝑖𝑖)𝑓𝑓𝑖𝑖, where density is a function of size, and is fitted 
to the observed catch ci for the i-th observation, which is at stratum si, year ti, and size li. The 
spatio-temporal-at-size variation, 𝜃𝜃(𝑠𝑠, 𝑡𝑡, 𝑙𝑙) , is modeled by combining the GRF for spatial 
variation with a first-order autoregressive processes (AR1) for temporal and for size variation. 
However, more complicated models for covariation among sizes could be explored. For example, 
different cohorts often partition habitats spatially such that different sizes/ages may be negatively 
correlated, and negative correlations are not approximated well using the AR1 process used in 
Kai et al. (2017b).  In these cases, researchers could instead explore a factor model for size/age 
covariance (e.g., Thorson et al., 2017a), where a full-rank or rank-reduced covariance is 
estimated.   

3.3.3 Yellowfin application 
A VAST implementation of a spatiotemporal delta model is used to standardize the length- 
composition data from the dolphin-associated yellowfin fishery. The model is an extension of 
that used for the CPUE described in the previous sections. The lengths are grouped into 10 cm 
bins for computational efficiency, and preliminary stock assessment results (not shown here) 
show that moving from 2cm to 10cm length bins had a negligible impact on results. Interactions 
in the model include 1) length bin and time, 2) length bin and space, and 3) length bin, and time 
and space . We specify that spatio-temporal variation and intercepts are independent for each 
combination of year, quarter, and length bin (i.e., not using the AR1 components) to minimize 
estimation covariance among bins (because the resulting estimated covariance matrix is not 
typically provided to the stock-assessment model). The resulting length-compositions are 
compared with those obtained from the raw data simply by weighting each sample by the 
number of sampling events (the number of wells, which are the storage compartments for the fish 
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on board the vessel). We include a separate intercept for each component of the delta-model for 
each season-year combination (i.e., season-year is a categorical variable). No covariates are 
included in the model. The whole EPO is modelled simultaneously, and composition data are 
extracted for each spatial stratum. The data used in the model are aggregated at a year, quarter 
and 5° x 5° level to match the resolution of the length-composition data. Twenty knots were used 
for the spatio-temporal model for size, as the increased model complexity prevented using the 
higher mesh resolution of the CPUE model. Also, the dataset covers 70 unique 5° x 5° cells 
during 1975-2016, and on average less than 10 unique 5° x 5° cells in each quarter, so 20 knots 
balances estimation accuracy and computation efficiency. With this lower number of knots, the 
model still took more than a day to provide results in a 6-CPU parallel R environment. 

Two sets of length-composition data are developed from the same model and each spatial 
stratum (the sizes of spatial stratum are assumed to be equal) is weighted by CPUE and by catch 
(see the next section for details and rationale for using catch): 

1) composition for each of the three fisheries used in the assessment (Fig. 1); and 
2) composition for the whole EPO. 
The size-composition data estimated by the spatio-temporal model using either catch 

weighting or CPUE weighting are similar to the nominal size compositions for all three fisheries 
(Figs 4-6) and the EPO as a whole (Fig. 7). However, there are some differences in the size of 
the fish in the composition data, particularly between the nominal length-composition and the 
two spatio-temporal model-based composition estimates. In general, the two types of spatio-
temporal model-based length compositions are more similar to each other than they are to the 
nominal compositions, but there are also instances where the catch weighted and the CPUE 
weighted compositions are different. Overall, the difference between the three length 
compositions is larger in the early period and in the southern fishery due to small sample size.  

The spatial distribution of the length frequency samples was much more restricted than the 
data used for the CPUE analysis (Fig. 2d). Therefore, since no temporal correlation was used in 
the analysis, the VAST model substantially augments the spatial distribution for a particular 
year-quarter using the spatial main effect given that the data is very limited for each year-quarter. 
This can be seen in the similarity in the spatial distribution of mean length among years (Fig. 2c).    

3.4 Use in the stock assessment model 
The spatio-temporal modeling approach described above estimates a multivariate index of 
relative abundance for size composition, such that it is preferable to fit the index in the stock 
assessment model using a multivariate likelihood function that takes correlation among sizes and 
time into consideration. However, if the assessment software does not have this capability, the 
index can either be: 1) broken into separate indices for each age (or size composition group), or 
2) broken into a total abundance index with a separate estimate of proportion-at-age or 
proportion-at-size that is then treated as “composition data” within the stock assessment model. 
The variance in estimates of proportion-at-age or -size could be used to calculate an input sample 
size for likelihood function used to fit the composition data in the stock assessment (Thorson, 
2014), and this input sample sizes could then be down-weighted to represent the impact of model 
mis-specification (Francis, 2017; Thorson et al., 2017b; Xu et al., 2020).  

Size- or age-compositions representing the component of the population associated with the 
abundance index are unlikely to be the same as those describing fishery catches. The above 
methods define an approach to estimate the composition for the index of relative abundance, 
which is complicated for fishery-dependent CPUE because fishery composition data are used 
both to estimate population proportions in each category, and to estimate the selectivity 
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governing fishery removals. Composition data representing fishery removals should be raised to 
the total catch by weighting the spatial-explicit composition data by the respective catch for each 
location. However, this raises two problems. The first is the appropriate weight to give to the 
composition data likelihood function in the stock assessment. This is a standard problem in 
contemporary fisheries stock assessment (Francis, 2017; Maunder et al., 2017; Punt, 2017), and 
will not be addressed here. The second is that the composition data will generally be used twice 
due to limitations of standard stock assessment approaches, once for the index of relative 
abundance and once for the catch. Double use of data under the typical assumption of 
independent likelihood functions is a violation of standard statistical practices. However, given 
the arbitrariness of data weighting and the common approach of internally estimating the 
weighting of composition data, the double use of the data is probably less of an issue than using 
biased composition data for indices of relative abundance. A simple ad hoc approach to 
downweighting the data (e.g., Tremblay-Boyer et al., 2018) might be all that is needed. 

The method used to calculate the catch-at-size within the spatio-temporal analysis is to sum 
predicted catch in number at size (or observed catch-in-number, if it is assumed to be known 
with little error) for each stratum to give the overall catch-at-size to use in the stock assessment 
model. If the data used in the spatio-temporal model is not the total catch, e.g., if some data were 
discarded at the grooming stage to avoid bias when estimating the index of relative abundance, 
then the calculations need to be adjusted to use the total effort or the total observed catch by 
stratum. The stock assessment model could then remove the catch-at-size directly as estimated 
from the spatio-temporal model paralleling a VPA or with flexible time varying selectivity if 
used in a contemporary statistical stock assessment model (e.g., Nielsen and Berg, 2014; Stewart 
and Monnahan, 2017). For example, a flexible semi-parametric time-varying selectivity has been 
implemented in Stock Synthesis (Xu et al., 2019b). Alternatively, consistent with the underlying 
assumptions of the spatio-temporal model, the temporal variation may be due to spatial changes 
in the fleet distribution and the method of Hoyle and Davies (2009) using many spatially defined 
fisheries with time-invariant selectivity might be appropriate. Seasonal selectivities may be 
needed if this approach is taken since many stocks experience seasonal movement. Other shifts 
in distribution due to environmental factors (e.g., El Niño) may also have to be addressed.   

Since the composition associated with the abundance index represents the population, only 
factors representing density effects on the composition data should be used in calculating the size 
structure of the index in the spatio-temporal model, and catchability effects should be ignored 
when predicting compositions. In contrast, catchability effects should be included when 
predicting the fishery catch size structure in the spatio-temporal model as these will impact the 
expected composition of the catch from each fishery. 

3.4.1 Yellowfin application 
The stock assessment was applied to the datasets presented in the previous sections. The length- 
composition data were also calculated for the catch so that the abundance length-composition 
and the catch length-compositions could be used simultaneously. The data were included in the 
assessment as either: a) length compositions and an overall index of abundance or b) indices for 
each 10cm length bin. The index for the southern fishery was not included in the stock 
assessment due to low sample size, but the southern area was included in the calculation for 
indices based on the whole EPO. Length composition sample size is equal to the number of wells 
samples except where noted otherwise.     

The stock assessment model runs compared seven ways of treating length-composition and 
length-based catches (labeled 1-5, 6A and 6B below), and three alternative ways of weighting the 
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length composition data (labeled DW1, DW2, and DW3): 
1) Nominal CPUE and length composition data for each of the three fisheries. 
2) VAST-standardized CPUE and length-composition data for each of the three fisheries 

with 
a. CPUE-weighted length-composition; and 
b. Catch-weighted length-composition. 

3) VAST-standardized CPUE and CPUE-weighted length composition data for each of 
the three fisheries treated as “surveys” (i.e., fisheries with no associated catch but an 
index of abundance and composition data), and catch-weighted composition data for 
the fisheries. The fisheries and surveys have different estimated selectivities. 

4) VAST-standardized CPUE and CPUE-weighted length composition data for the 
whole EPO, and catch-weighted composition data for the three fisheries. The fisheries 
and surveys have different estimated selectivities 

5) The same as 4), except that the fisheries have time-varying selectivities. A double-
normal selectivity function was used for the fishery and the parameters of the 
function have a random walk process in time with a 20% coefficient of variation 
(CV). 

6) A: VAST-standardized length-bin-specific CPUE indices (time-invariant estimated 
CV) for the whole EPO and catch-weighted composition data for the three fisheries. 
The fisheries and surveys have different selectivities. The fisheries have estimated 
selectivities. The selectivities for each survey that represent a length bin-specific 
CPUE index are fixed at 1 for lengths in that length bin and zero for others lengths. 
The lognormal likelihood function used to fit the index data is not defined for zero 
observations so the first three and last two 10cm length indices were not used in the 
analysis because they were predominantly zeros. Initially, 1 was added to all the 
index values to avoid computational errors due to zeros for the other age bins. 
However, the results were still impacted by the zero observations, which often 
occurred between bins with observations substantially greater than zero, and therefore 
the zero observations were removed from the calculations. This issue needs further 
investigation if the approach is used in applications.  
B: The same as 6A, but with time-varying CVs in the likelihood function used to fit 
the abundance index based on those estimated from the spatio-temporal model with 
an estimated additive CV.  
 

A. DW1). The same as scenario 2b. 
B. DW2). DW1, but with the length-composition samples re-weighted using the Francis 

method. The Francis method calculates the sample sizes that lead to confidence 
intervals on the observed mean size that are consistent with the hypothetical fit to 
mean size and therefore takes correlated residuals into consideration.  

C. DW3). DW2, but with the initial input sample size based on the VAST-estimated 
sample size then re-weighted using the Francis method. 

The estimates of the spawning biomass ratio (SBR: the spawning biomass divided by the 
average spawning biomass in the absence of fishing) were similar for all model runs (Figs 8 and 
9). The largest differences occurred for the runs that used length bin indices of abundance rather 
than composition data. However, these models were problematic due to issues related to dealing 
with zero observations. There are differences in the management quantities among the runs that 
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could result in different management actions (Table 4). Using catch-weighted length-
composition data had the largest influence on management quantities.    

The sample sizes for the composition data estimated from the spatio-temporal model differ 
somewhat from the number of wells sampled (Fig. 9). However, the data weighting had little 
influence on the results (Fig. 10).        

4. Discussion 
Spatio-temporal modeling of CPUE and associated composition data have some clear advantages 
(Thorson, 2019a) but are still rarely used as inputs to stock assessments. We have outlined here 
several approaches to using the fishery-dependent indices of abundance and composition data 
within stock assessment models. The approach is based on three concepts: 1) composition data 
that are used to determine the component of the population represented by the index should be 
weighted by CPUE (abundance) while the composition data used to represent the fish removed 
from the stock should be weighted by catch; 2) due to spatial non-randomness in fishing effort 
and fish distribution, the index, index composition, and catch composition, should be calculated 
at a fine spatial scale (e.g., 1°x1°) and summed; and 3) fine-scale spatial stratification will likely 
result in under-sampled and unsampled cells and some form of smoothing method needs to be 
applied to inform these cells. 

Our application to yellowfin tuna showed some sensitivity to the assumptions about how the 
indices of abundance and length-compositions are created, but these sensitivities are probably 
small compared to other uncertainties in the stock assessment model (e.g., about natural 
mortality, asymptotic length, selectivity, data weighting, or the stock-recruitment relationship). 
The results will be more sensitive to the approaches we have discussed when there is clear spatial 
structure in the abundance and size of fish while fishing effort is nonrandom. The sensitivity will 
also depend on what other data are used in the assessment and how informative they are. The 
lack of sensitivity of the results of the yellowfin assessment to the use of alternative indices 
could be partly due to the inclusion of composition data from other fisheries (longline and purse 
seine sets on floating objects and unassociated schools) in the assessment. 

The benefit of spatio-temporal modelling was illustrated by the application of area weighting 
to GLM-based indices of abundance, which led to higher weight to the poorly sampled southern 
stratum, creating an index of abundance for the whole EPO that is more variable. In contrast, the 
spatio-temporal model allowed the sharing of information among areas and removed much of the 
variability in the final index of abundance. This result suggests that spatio-temporal models can 
be useful tools to derive indices of abundance and composition data when sampling intensity 
varies across the spatial domain. 

One advantage of using spatio-temporal analyses is that they account for variability in 
sampling over space and time, which otherwise violates the assumptions underlying the use of 
time-invariant catchability and selectivity. However, these analysis methods still assume that the 
gear component of selectivity is temporally invariant. The inclusion of relevant catchability 
covariates may partially address this issue.  Applications of spatio-temporal models thus appear a 
more effective approach to handling time-varying selectivity than alternatives (e.g., Stewart and 
Martell, 2014) because they may retain more of the information on abundance.  

Computational demands are probably the largest roadblock to conducting the desired 
analyses. Compromises, such as broader size bins and simplified correlation structures, have to 
be made until the computational demands can be solved. Other issues such as the appropriate 
multivariate likelihood functions for the index, index composition, and catch composition data 
are academically interesting, but probably of a lesser priority. 
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4.1 Issues 
Several issues arise when conducting spatio-temporal analyses, which will need to be addressed 
in the future. Most of these come down to a tradeoff between the computational demands of the 
approach and the desire to implement more accurate modelling of the system. Here we focus on 
several issues. The first is the extent to which the correlation structure of the model approximates 
what might be expected given the underlying habitat complexity (i.e., how habitat changes in 
space). For example, depending on the habitat, CPUE may change more with latitude than with 
longitude, or vice versa (i.e., geometric anisotropy). In such cases, the parameters of the 
correlation function should be estimated separately for latitude and longitude, and this should 
generally be the default assumption.  

Temporal and length correlation (e.g., AR1) were not used in the yellowfin application. This 
choice was made to (1) minimize the estimation covariance between estimated proportion-at-
lengths for adjacent years (this estimation covariance would likely increase when specifying a 
temporal correlation in the spatio-temporal model), and (2) avoid the increased computational 
demands when modelling temporal autocorrelation. Length bin – time, length bin – space, and 
length bin – time – space interactions are included in the model, but the spatial effects were 
assumed independent across time and length. We specified spatio-temporal variation and 
intercepts as independent for each combination of year, quarter, and length bin; this specification 
minimizes any sharing of information over time, and may be appropriate given that the stock 
assessment model’s likelihoods used in the yellowfin application assume that length composition 
data are independent for every year-quarter combination. The correlation structure is also 
complicated due to strong cohorts growing or aging over time. The amount of correlation might 
be related to the biology of the species. For example, less temporal correlation might be expected 
for short-lived species that exhibit large recruitment variation. More research needs to be 
conducted to determine how much sharing of information should be carried out within the spatio-
temporal model versus within the stock assessment itself.  

There is a tradeoff between the level of data aggregation and computational demands. The 
least computationally demanding approach is to define a data point as the data aggregated to the 
level of the factors included in the spatio-temporal model. For example, a data point could be a 
year by 1x1 degree square by 1 cm length interval in a simple spatio-temporal model. The 
variance within that stratum could then be associated with the data point and used in the 
likelihood function. However, the data would likely have to be disaggregated if it was later 
decided that other factors should be added to the analysis. For example, the data would also have 
to be disaggregated by vessel if vessel was included as a factor. Conversely, each fishing 
operation could be considered as a data point to allow full flexibility for covariates and variance 
estimates. A related problem is that composition data may not be available for every set of the 
gear in some, if not most, applications. In this case, the catch and composition data could be 
aggregated separately by stratum and separate likelihoods used for each component, with the 
catch likelihood weighted by the effort and the composition data (perhaps using a multinomial 
distribution-based likelihood) weighted by the sample size. Scaling factors may need to be 
estimated for the variance components of each of the likelihoods. In the yellowfin application we 
use the full data set to calculate the index of abundance and a data set limited to locations that 
had composition data to calculate the length compositions, which may lead to some 
inconsistencies.   

Inclusion of age or size data extends the standard spatio-temporal model from 3 to 4 
dimensions, greatly increasing the computational demands of the analysis. Analysts may need to 
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decrease the resolution of size structure included in the model. For example, Kai et al. (2017b) 
only used 13 size-classes in their analysis of data for shortfin mako shark (Isurus oxyrinchus) 
and we aggregated the data to 10 cm bins for the yellowfin applications. Most stock assessment 
models use composition data with the intention to mainly provide information on selectivity and 
recruitment, and therefore may need a finer resolution. For our yellowfin tuna example, the 2cm 
length bins used in the current stock assessment (Minte-Vera et al., 2019) led to a VAST model 
that was too computationally demanding to apply, and 10cm bins had to be used instead. 
Fortunately, we found that the results from the stock assessment using the nominal length 
composition data were essentially the same between 2cm and 10cm bins for all fleets. Additional 
research is needed to investigate efficient ways to implement the model to ensure that the desired 
resolution is practical.  

When data from multiple fleets are available, consideration should be given to analyzing 
those data simultaneously in the same model, thereby allowing for an “integrated” index of 
abundance to be developed. Although the catch size-composition may differ between the fleets in 
a given spatial stratum due to differences in their selectivity (e.g., the gear characteristics such as 
depth of fishing), in spatial strata where the fleets overlap, the underlying size-specific density 
encountered by the fleets will be the same. This concept may be utilized to better model age- or 
size-composition spatially, but will require estimation of gear specific selectivity. Several studies 
have developed indices of abundance using spatio-temporal analysis of multiple surveys (e.g., 
Dolder et al., 2018; Grüss et al., 2018; Runnebaum et al., 2017), but to our knowledge only Ono 
et al. (2018) has done so while generating age- or size-composition estimates.  

The final, and possibly the most important issue, is preferential sampling due to the use of 
fishery-dependent CPUE data. In general, fishers target areas where the fish are abundant, and 
therefore the available data will have higher CPUE than in under-sampled and unsampled areas. 
It should also be noted that fishers may fish in areas of lower abundance due to convenience, 
safety, or profitability. The preferential sampling issue is somewhat reduced using spatial 
weighting compared to data or effort weighting. However, there is a tradeoff between accuracy 
and variance when applying spatial-temporal models since areas with abundant data 
(preferentially sampled areas) will inform under-sampled and unsampled areas. This is 
particularly concerning when information for large contiguous spatial areas has to be imputed for 
some years. Including covariates that relate to abundance may further reduce the impacts of 
preferential sampling. However, separating the effect of covariates on abundance from 
catchability may be problematic.  

4.2 Other methods 
The spatio-temporal modelling approach we described is based on Gaussian random fields and 
follows the work of Lewy and Kristensen (2009), Kristensen et al. (2014), Nielsen et al. (2014), 
Thorson et al. (2015a), Kai et al. (2017a,b), and Thorson and Haltuch (2018). However, there are 
several other approaches that have been used for spatio-temporal modelling. For example, the 2-
D spatial surfaces of generalized additive models (GAMs; e.g., Wood, 2006), commonly fitted 
with tensor product smooth terms, can be extended to allow for changing spatial structure 
through time by specifying a 3-D surface (e.g., Rooper et al., 2016). Use of separate smoother 
types for space and time allows for different amounts of smoothing in space and in time 
(Augustin et al., 2013). Other extensions of classical generalized additive models permit the 
modelling of spatio-temporal structure where boundaries exist in space. This is done with the use 
of soap film smoothers (Wood et al., 2008) that do not require spatial structure to be connected 
across boundaries, such as stock boundaries (Augustin et al., 2013), or across physical barriers 
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such as peninsulas. Also, spatio-temporal GAMs allow for other covariates in the model, which 
could permit the simultaneous modelling of size, in addition to the spatio-temporal effects. 
GAMs can be extended to generalized additive mixed-effects models (GAMMs) to account for 
factors, such as vessel effects, that are better parameterized as random effects. This can be done 
in the context of GAMs by treating the random effects as penalized fixed effects (Wood, 2006; 
Augustin et al., 2013). There are also simpler approaches for improving the fit to size data when 
there is spatial size variation and time-varying sampling. These include stratifying and weighting 
the size data in proportion to the long-term spatial distribution of either relative abundance 
(Hoyle and Langley, 2011) or catch (Hoyle et al., 2012).  

Future research could also explore the range of machine-learning regression techniques to 
model spatio-temporal variation (in the following, we refer to tree-based methods for regression, 
but note that recursive neural networks have shown promise in time-series learning 
environments). Tree-based methods (e.g., Classification and Regression Trees (CART) and 
random forests; Breiman et al., 1984; Breiman, 2001) can be used to explore interactions of 
space (using multiple, possibly correlated, measures, e.g., latitude, longitude, and/or distance 
from port), time (year, season), and size (length, weight, age), while also including other 
explanatory variables. They can easily be adapted to multivariate response variables and loss 
functions other than squared error loss (e.g., length-frequency distributions or CPUE trends; 
Lennert-Cody et al., 2010, 2013). There are no structural constraints on the space and time scales 
of the spatio-temporal structure captured using these types of algorithms, except in a limited 
manner by way of the spatial and temporal resolution of the predictors. Therefore, by their very 
nature, tree-based algorithms have the flexibility to implicitly capture complex spatio-temporal 
structure over a range of scales, and this can be helpful in exploratory analyses in the case of 
CART, or for challenging predictive problems in the case of random forest methods, when the 
underlying process behind the data are unknown.  Ongoing research suggests that machine 
learning techniques can decrease predictive errors for local predictions of resource density, but 
also result in increased bias in some instances (Stock et al., 2019).   

4.3 Potential applications 
There are numerous current and possible applications of spatio-temporal models that are relevant 
to the management of tuna and related species in the eastern Pacific Ocean (EPO) or other 
species in other oceans. For example, Kai et al. (2017a,b) applied spatio-temporal models to blue 
and mako sharks, and Thorson et al. (2017a) explored the relative explanatory power of local and 
regional temperature, size-structure, and otherwise unexplained processes in explaining the 
shifting distribution for Alaska pollock (Gadus chalcogrammus) in the Bering Sea. Similarly, 
spatio-temporal models could be used to generate short-term forecasts of distribution that may in 
some cases improve upon a default “persistence” forecast (Thorson, 2019c), and these could be 
useful for fishery stakeholders, e.g. for planning spatial management such as move-on rules 
(Eveson et al., 2015). In all cases, simulation experiments would be useful to determine the 
effectiveness of the various approaches and their specific applications.   

Table 2 lists example applications using spatio-temporal models to standardize CPUE data 
and Table 3 lists example applications that include composition data. The applications use a 
variety of methods and make various assumptions. Some use formal statistical tests to determine 
what assumptions are used in the final model, while others are ad hoc or are made due to 
computational constraints. For example, some models use only a spatial-temporal component, 
while others used both a spatial component and a spatial-temporal component. The spatial 
component may be a GRF or a function of latitude and longitude. Some applications have 
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temporal correlation, but many assume temporal independence, which ignores some of the 
advantages of using spatio-temporal models. Similarly, many of the applications for composition 
data ignore correlation among size-classes. This indicates that there is still much research needed 
to determine the appropriate assumptions to make (likely to differ among applications) and what 
strategy to adopt for improved performance.         

Management boundaries are often politically motivated and do not represent the biology of 
the species. This causes issues when there is spatio-temporal variation in the population 
distribution in relation to the management boundary (i.e., environmental conditions cause some 
of the stock to move across the management boundary in some years) and application of spatio-
temporal models may better inform management decisions.  For example, purse seine data have 
been used to develop indices of relative abundance for silky sharks (Carcharhinus falciformis) in 
the eastern Pacific Ocean. However, these indices, particularly for juvenile sharks, appear to be 
biased due to movement of individuals in and out of the EPO, or in and out of the area fished by 
purse seiners, possibly due to changing environmental conditions (Lennert-Cody et al., 2019). 
Therefore, integrating additional data sets (e.g., purse seine data from the western and central 
Pacific Ocean and longline data for the whole Pacific Ocean) into a spatio-temporal analysis to 
extend the northern and western range of the data may help determine the influence of movement 
and improve the indices of abundance, since they provide a way to account for data beyond the 
spatial domain of interest (e.g., the EPO), but allow extraction of indices specific to the area of 
choice.  

Temporal change in gear characteristics is a common issue in CPUE standardizations and, if 
not addressed, can bias indices of abundance. The issue is typically addressed by including gear 
characteristics as covariates in the analysis. However, gear characteristics may also vary 
spatially, and spatial changes in the effort may confound temporal changes in gear 
characteristics. Therefore, spatial patterns in gear characteristics need to be addressed. The 
Japanese longline fleet that targets tuna in tropical waters has shown changes in spatial 
distribution and in gear characteristics over time in several oceans including the EPO (e.g., 
Lennert-Cody et al., 2012; Hoyle and Okamoto, 2011; Hoyle et al., 2017). The catch and effort 
data from this fleet are used to compute the main indices of relative abundance for the EPO stock 
assessments of yellowfin and bigeye tuna. Spatio-temporal models that consider gear factors as 
catchability covariates should be used to develop the indices of abundance. For example, the 
spatio-temporal component of the model might depend on the hooks between floats, which 
influences the depth of the hooks, and this could combine the statistical habitat based 
standardization approaches (e.g., Maunder et al., 2006b) with the newer spatio-temporal 
methods. 

Spatial variation in sex as well as size is common for many species and should be taken into 
account when developing indices of abundance and composition data. For example, albacore 
tuna (Thunnus alalunga) shows differences in distribution by size and sex (Chen et al., 2010; 
Ichinokawa et al., 2008). Therefore, the analysis of longline catch and effort data, which is used 
as the main index of abundance, could be conducted using spatio-temporal models in which the 
spatio-temporal component is a function of both length and sex.  

Cohort targeting, particularly when combined with ontogenetic movement, can lead to 
serious issues with indices of abundance based on CPUE data that may be resolvable with spatio-
temporal models. Pacific bluefin (Thunnus orientalis) have shown substantial changes in both 
the spatial distribution of the stock and the fleet, which has been further complicated by changes 
in targeting (Oshima et al., 2012). Standardization models for Taiwanese longline bluefin CPUE 
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showed significant year and area interactions, and indices of relative abundance showed different 
trends among spatial strata (Chang et al., 2017).  There appears to be spatial targeting of large 
cohorts of mature bluefin tuna as they move through the Japanese longline fishery into the 
Taiwanese longline fishery (Maunder et al., 2014). This violates the constant selectivity 
assumption that is typically needed for an index of relative abundance to be informative. Joint 
spatial-temporal modelling of CPUE and composition data may facilitate the use of constant 
selectivity for a longline based index of relative abundance for Pacific bluefin tuna. In addition, 
joint modelling of the Japanese and Taiwanese longline data, which may have different 
selectivities, could improve the spatial coverage. 

Spatio-temporal models may provide an effective way to complement survey data with 
fishery- dependent data. Assessments for eastern Pacific Ocean dolphin stocks (e.g., Hoyle and 
Maunder, 2004) have been conducted using estimates of absolute abundance based on ship-based 
line transect surveys (Gerrodette et al., 2008). However, these surveys are expensive and limited 
in temporal scope and frequency. Therefore, it might be useful to combine the information 
collected by fisheries observers onboard the commercial tuna vessels, which use dolphins to 
locate and catch yellowfin tuna, with the survey data to obtain estimates of abundance. Although 
it is unclear how the biases that have previously been identified in the fisheries observer data 
(Lennert-Cody et al., 2001, 2016) would be addressed, spatio-temporal models would be 
required to combine the two data sets because the commercial tuna fishery has a different spatial 
and temporal distribution of effort than do the fishery-independent surveys.  

4.4 Recommendations 
Applications of spatio-temporal models should follow the recommendations outlined in Thorson 
(2019a).  For example, always include a spatio-temporal interaction term, carefully define the 
spatial domain for extrapolation, distinguish catchability and density covariates, and process 
results to expand estimates while accounting for area (in index standardization) and/or catch 
(when standardizing catch proportions as explored here).      

We also provide some recommendations on best practices for stock assessment, but more 
research needs to be conducted before they become the standard practice. CPUE and 
compositional data should be analyzed in a single spatio-temporal analysis, and the resulting 
index of abundance for the whole stock (or sub-stock if interacting sub-stocks are modelled in 
the stock assessment) and associated CPUE-weighted composition data should be used in the 
assessment to represent abundance. The area-specific catch-weighted composition data should be 
used to represent fisheries with time-varying selectivity (or fine spatial scale defined fisheries 
with time invariant selectivity), if necessary, or it should be assumed that fishery catches are 
known exactly and the product of catch-expanded composition data and total fishery catch 
removed from the population (similar to how removals are treated in a VPA). The effective 
composition sample size from the spatio-temporal model should be used in the stock assessment 
to represent relative weight and an appropriate form of reweighting used to adjust the overall 
weighting for the composition data. The year-specific variance for the index of abundance from 
the spatio-temporal model should be used in the stock assessment likelihood function, and an 
additional variance should be estimated within the stock assessment model to represent 
unmodelled variation in catchability and other model error.   
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 1069 
Figure 1. Dolphin associated purse seine fishery (DEL) and longline (LL) spatial strata 
definitions for the fisheries north (N), inshore (I) and south (S).   
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 1074 
 1075 
Figure 2a. Predicted logarithm of CPUE in tons per day fished for i) an El Nino period (fourth 
quarter of 1997) ii) a La Nina period (fourth quarter 1998) and iii) a neutral period (fourth 
quarter of 2003), and iv) logarithm of the observed average nominal CPUE over all years (1975-
2016). 
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 1084 
Figure 2b. Effort in days fished for i) an El Nino period (fourth quarter of 1997) ii) a La Nina 
period (fourth quarter 1998) and iii) a neutral period (fourth quarter of 2003), and iv) the average 
over all years (1975-2016). 
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 1089 
 1090 
Figure 2c. Predicted mean length (cm) for i) an El Nino period (fourth quarter of 1997) ii) a La 
Nina period (fourth quarter 1998) and iii) a neutral period (fourth quarter of 2003), and iv) the 
observed average mean length over all years (1975-2016). 
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 1095 
 1096 
Figure 2d. Number of wells sampled for length composition for i) an El Nino period (fourth 
quarter of 1997) ii) a La Nina period (fourth quarter 1998) and iii) a neutral period (fourth 
quarter of 2003), and iv) the average over all years (1975-2016). 
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 1103 
Figure 3. a) Indices of abundance from the GLM analyses compared to the nominal index; b) 
GLM-based indices of abundance for each spatial stratum; c) the index of abundance for the 
EPO from the spatio-temporal model compared to the nominal index; and d) the index of 
abundance for the three spatial strata (fisheries) from the spatio-temporal model.  
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 1112 
 1113 
Figure 4. Comparison of the first quarter of each year of spatio-temporal model-based length-
compositions from catch and CPUE area based on weighting with nominal length compositions 
for fishery 1. Catch weighting means weighting each composition data in a cell and time period 
by the catch. CPUE weighting means weighting each composition data in a cell and time period 
by the CPUE.  
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 1123 
Figure 5. As for Fig. 3, except the results are for fishery 2.  
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 1132 
Figure 6. As for Fig. 3, except the results are for fishery 4.  
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 1142 
Figure 7. As for Fig. 3, except the results are for the entire EPO.  
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Figure 8. Spawning Biomass Ratio (SBR) for the models. The models are defined in section 
3.4.1. 
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Figure 9. a) Relative sample size estimated from the spatio-temporal model (VAST) compared 
to the number of wells (Wells). b) Frequency distributions for the ratio of the sample size 
estimated from the spatio-temporal model to the number of wells. 

1158 
1159 
1160 

 1161 
  1162 



 
 36 

 1163 
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Figure 10. SBR for the data weigting scenarios. The data-weighting scenarios are defined in 
section 3.4.1. 
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Table 1. Relevant features of the yellowfin stock assessment application. 1171 
 1172 

Feature Reference analysis Changed in analyses 
Modelling framework Stock Synthesis  
Time span 1975 to 2018  
Maximum age Plus group at 7.25 (29 quarters)  
Time step Quarterly  
Number of fisheries Sixteen. Defined as a combination of gear 

used, set type, and area of operation. 
 

Number of indices of abundance 3 (Sothern longline, Northern dolphin 
associated purse seine, and inshore 
dolphin associated purse seine fishery). 
Southern longline fishery index has a 
change in catchability and selectivity in 
2010. 

Yes – the dolphin associated purse seine 
fishery indices are the focus of this 
research. Some runs combine the data 
into a single dolphin associated purse 
seine index 

Natural mortality Age and sex structured, fixed  
Growth Richards growth curve, fixed  
Stock recruitment function Constant with lognormal deviates, 

penalized likelihood framework 
 

Recruitment standard deviation Fixed at 0.6  
Selectivity Dome shaped for all fisheries except the 

southern longline fishery, estimated for 
most fisheries and the index 

 

Index of abundance Sothern longline based on a GLM analysis, 
dolphin associated purse sein indices 
based on nominal data 

Yes – Different scenarios are 
investigated 

Index of abundance composition data Data weighted Yes – area stratified and weighted by 
CPUE or catch 

Fishery composition data Data weighted Yes – 
catch 

area stratified and weighted by 
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 1175 
 1176 
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Table 2. Example applications using spatio-temporal models to standardize survey or CPUE data. VAST includes VAST or its 
precursors (R packages SpatialDeltaGLMM or SpatialDFA). t = time, s = space, v = smoothness parameter. 

1177 
1178 

 1179 
Reference Model type Software Model 

structure 
t + s + t*s 

Spatial 
covariance 

Temporal 
covariance 
(in t*s) 

Spatial main 
effects 

temporal main 
effects 

Stock Other 

Cao et al. (2017)  Delta-GLMM  VAST t + s + t*s Matern (v=1) 
anisotrophy 

  None GMRF Categorical Northern shrimp 
(Pandalus borealis) 
in the Gulf of Maine 

Survey data, compared to 
design based methods 

Cavieres and 
Nicolis )2018) 

Bayesian GLMM INLA t + s Matern NA GMRF Categorical/rand
om walk 

Yellow squat lobster 
(Cervimunida johni) 
off Chile 

 

Gruss and 
Thorson (2019) 

 Delta-GLMM  VAST t + s + t*s Matern (v=1) 
anisotrophy 

None GMRF categorical Gulf of Mexica red 
snapper (Lutjanus 
campechanus) 

Fits to biomass, count, 
and presence-absence 
data. 

Gruss et al. 
(2019) 

 Delta-GLMM VAST t + s + t*s Matern (v=1) 
anisotrophy 

None GMRF Categorical Atlantic blue Marlin 
(Makaira nigricans) 

Compared with 
simulated data to GLM, 
GLMM, GAM, 
with/without area*year 
interaction, area 
weighting,  

Kai (2019 )  Delta-GLMM TMB t + s + t*s Matern (v=1) 
anisotrophy 

AR1 GMRF Categorical Blue shark and 
shortfin mako in 
north Pacific 

the 
Uses a quarterly effect, 
but does not allow a 
random effect over 
quarter x year 

Lewy and 
Kristensen 
(2009) 
 
 

Log Gaussian Cox 
Process (LGCP) 
(multivariate 
Poisson-
Lognormal 
distribution) 

R s Exponential with 
estimated nugget 

Each year 
analyzed 
independentl
y 

Second degree 
polynomials 
for latitude 
and longitude 

Each year 
analyzed 
independently 

Cod (Gadus morhua) 
in the North Sea and 
the Skagerrak 

Conducted separately for 
age groups 1, 2, 3+ and 
for each year 

Thorson and 
Barnett (2017) 

Delta-GLMM factor 
analysis for 
species 

VAST t+t*s Matern (v=1) 
anisotrophy 

None None Categorical US Pacific coast 
rockfish  

Uses factor analysis to 
model correlations 
among species, a similar 
approach can be used for 
age/length 

Thorson 
(2015a)  

et al. Delta-GLMM VAST t + s + t*s Matern (v=1) 
anisotrophy 

None GMRF Categorical 28 groundfish 
species off the U.S. 
West Coast 

Survey data, compared to 
design based 
methods 

Tremblay-Boyer 
and Pilling 
(2017) 

Delta-GLMM VAST t + s + t*s Matern (v=1) 
anisotrophy 

None GMRF Categorical Bigeye (Thunnus 
obesus) and 
yellowfin tuna 
(Thunnus albacares) 
in the Western and 
Central Pacific 
Ocean 

 

Tremblay-Boyer Delta-GLMM VAST t + s + t*s Matern (v=1) None GMRF Categorical Albacore tuna Indices included in the 
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et al. (2018) anisotrophy (Thunnus alalunga) 
in the South Pacific 

stock assessment for 
index fisheries 

Xu et al. (2019a) Delta-GLMM VAST t + s + t*s Matern (v=1) 
anisotrophy 

None GMRF Categorical Yellowfin tuna 
(Thunnus albacares) 
in the eastern 
Pacific Ocean 

 

Zhou et al. 
(2019) 

Bayesian Delta-
GLMM  

INLA t + t*s 
OR 
t + s 

Matern  AR1 
OR 
None 

None 
OR 
GMRF 

Categorical Australia’s Eastern 
Tuna and Billfish 
Fishery 

Compares with GLM and 
GAM with/without 
area*year interactions 

 1180 
 1181 
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Table 3. Example applications using spatio-temporal models to standardize age or size composition data. VAST includes VAST or its precursors. t 
= time, s = space, l = size (length) v = smoothness parameter. 
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 1185 
Reference Model type Software Model 

structure 
Spatial 
covariance 

Temporal 
covariance 

Age or size 
covariance 

Spatial 
main 

temporal 
main 

Age or 
main 

size Stock Other 

t + s + l + 
t*s + t*l + 
s*l + t*s*l 

(in t*s, s*l, or 
t*s*l) 

(in t*l, s*l, or 
t*s*l) 

effects effects effects 

Kristensen 
et al. (2014) 
 

Log Gaussian 
Cox Process 
(LGCP) 
(multivariate 
Poisson-

'lgc 
package 

s + s*t + 
s*t*l 

GMRF Exponential 
decay 

Exponential 
decay 

GMRF Population 
dynamics 
model 

Population 
dynamics 
model 

Cod (Gadus 
morhua) 

Includes 
growth, 
mortality, and 
reproduction 

Lognormal 
distribution) 

Nielsen et 
al. (2014),  

Log Gaussian 
Cox Process 
(LGCP) 

TMB l + s*l  GMRF NA Periodic, log, 
and logistic 

None NA Categorical Cod (Gadus 
morhua) and 
whiting 
(Merlangius 
merlangus) 

Also looked at 
between 
species 
correlation 

Kai et al. 
(2017b)  

Delta-GLMM TMB t + s + l 
t*s*l 

+ Matern (v=1) 
anisotrophy 

AR1 AR1 GMRF Categorical  AR1 Shortfin mako 
shark (Isurus 
oxyrinchus) in 
the north 

 

Pacific 
Perretti and 
Thorson 
(2019) 

Delta-GLMM VAST t*l + s*l + 
t*s*l 

Matern (v=1) 
anisotrophy None 

Random walk GMRF Random 
walk over t 
for each l 

Random 
walk over t 
for each l 

Summer 
flounder 
(Paralichthys 
dentatus) 

Fitted to two 
separate data 
sets 

Thorson 
and Haltuch 
(2018) 

Delta-GLMM  VAST t*l + s*l + 
t*s*l 

Matern (v=1) 
anisotrophy 

None None GMRF Categorical 
(t*l) 

Categorical 
(t*l) 

Lingcod 
(Ophiodon 
elongatus) in 
the California 
Current 

Separate 
spatial 
variances by 
length, but 
same 
decorrelation 
distance 
parameter 

 1186 
 1187 
 1188 
  1189 
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Table 4. Management quantities estimated by the stock assessment model for the scenarios. MSY = maximum sustainable yield, Srecent is the 
spawning biomass at the start of 2017, SMSY is the spawning biomass associated with MSY, Fmultiplier is the amount the current fishing mortality 
(averaged over 2014-2016) would have to be increased to equal the fishing mortality corresponding to MSY (FMSY/Frecent). 

1190 
1191 
1192 

 1193 

Quantity Run1 Run2a Run2b Run3 Run4 Run5 Run6a Run6b 
MSY (t) 264,903 264,103 263,313 266,032 266,467 272,280 269,189 270,640 

Srecent/SMSY 0.87 0.71 0.65 0.77 0.86 0.73 0.87 0.84 
Fmultiplier 1.15 1.08 1 1.12 1.15 1.17 1.19 1.16 
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